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C. 

Iiitroductioii 

We have successfully shown that RF excited CO2 .Itmegnide lasers can have a life 

in excess of 20,000 hours. Despite these results, the COn laser used as local oscillator in 

the laboratory model of a computer controlled IR radiometer had an unusually short life 

of only a few days. Evacuation and refilling with a new gas mixture always brought the 

local oscillator output power back to the initial power level. Repeated He leak testing 

and pressure monitoring did not reveal any measurable air leaks. This leaves outgassing 

products as the main trouble source. Lack of access to a good mass spectrometer prevented 

gas analysis to pinpoint the outgassing sources. Suspected outgassing and contaminating 

sources were the mirror “0” ring and the repaired indium “0” ring seal lip of the main 

housing. The original cover hole in the main housing was too large to effectively squeeze 

the indium “0” ring. The rim area was corrected by milling a groove and soft-soldering a 

small frame with the correct dimensions in place. We were afraid to heli-arc the delicate 

area because of heat warp danger. Ultrasonic cleaning may not have been sufficient to clean 

out all the acid flux in the tiny seams. Instead of analyzing and repairing the original laser 

housing, we decided to do it right and start with a new laser housing. 

Efficiency of the old RF coupling-starting network used between the RF transmitter 

and the laser was a deplorable 55% as mentioned in our April 1987 report. The RF 

resistivity of the stainless steel housing and a less than carefully designed network seemed 

to be responsible for the poor result. The shortcomings have now been corrected as shown 

in the following report. 

Laser Housing. 

The new housing was again fabricated from type 416SS because of a better thermal 

match to the B,O waveguide parts and 2,s optics. The mirror elastomer “0” ring was 

replaced with an indium “0” ring, arid the internal water cooling of the waveguide was 

replaced by improved thermal conduction cooling. (The housing can still be modified for 

internal water cooling if later desired.) Conduction cooling eliminates a fair number of 

seals between the cooling water circuit and the gas chamber. The disadvantage of thermal 
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cooling is a further gas volume reduction caused by additional cooling fingers and an 

increase of internal areas that are not easy to outgas. A sketch of the internal laser-cooling 

configuration is shown in Figure 1. It should also be mentioned that even if the cooling 

fingers do well in the laboratory, they may not survive future vibrational test requirements. 

The housing was finally plated with a 0.025 mm thick silver layer to reduce RF feed-in 

losses. The several skin depth thick silver layer was covered with a gold flash for additional 

corrosion protection. 

Coupling Network 

Silver-gold plating of the laser housing, a larger plated Kovar feedthrough pin, and 

better electrical contact with the new coupling network box increased the loss resistance 

across the laser capacitance from 15KO to about 3OKs1. The helical autotransformer was 

replaced with a single series coil L1 as shown in Figure 2. This series coil transforms the 

load conductance G + Ge to a conduckance G1 as seen across C1. GI should be around 

0.02 mho. The function of the “II” section formed by Cl,L2, and C2 is twofold: it has 

to exactly match G1 to the 50 ohm line when the gas discharge is on, and it also has to 

provide the proper phase angle of the starting input admittance when the gas discharge is 

off. All of these conditions have to be achieved with as much overall efficiency as possible. 

Both of the coils have Q factors of about 280, which could be slightly raised by using silver 

instead of tin-plated coil wire. 

Adjusting the network was more difficult than anticipated. Computer modeling gave a 

fair representation of the effects of changes in the different network components. Accurate 

adjustment of the components‘had to be done in the final position with the help of a 

grid dip meter. L1 was adjusted by varying the coil length till it resonated with the laser 

capacitance Ce at fr = 135MHz. Resonance was observed with the grid dip meter with 

C1 shorted out with a copper strap. It; can be shown that to a first order approximation 

[ (;)2 - 1]? = [ (E)2 - 11 = 0.019 II G + Ge 
(135 G1 - 

This brings GI near 0.02 mho. 
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The three compoents Cl, L2, and C2 of the “IT” network have now to be adjusted to 

represent an admittance of exactly 0.02 mho with the discharge on and the constraint that 

the phase angle of the input admittance is around 180” for the discharge off. Computer 

modeling indicates that this can be achieved with C1 around 60 pF. L2 can then be 

calculated and adjusted in place for the correct phase shift. Figure 3 shows that this could 

indeed be done for an RF power input of 10,20, and 30 W into the laser by simply tuning C1 

and C2. The starting admittance was measured with an old GR 1602B admittance meter. 

Figure 3 shows that the resulting SWR range is between 15 and 40. These values were 

reproducible but certainly too high by a factor of about 2. Computer calculations using 

the Q values for the coils and capacitors as well as the known feedthrough losses yield SWR 

values between 8 and 20. The discrepancy stems partly from admittance values that are 

too close to zero to be read accurately and partly from the fact that accuracy suffers if the 

measured admittance values are too far away from the reference admittance Yo = 0.02mho. 

Adjustment of the coaxial cable length between matching network and transmitter was 

done as described in the appendix paper: a parallel cluster of 17 69 ohm 2 W composition 

resistors was used to construct a 4 s1 load corresponding to Z,/SWR for SWR = 12.5. 

This load was then connected to the transmitter by using a X/2 long line made from 

GR airline sections and a line stretcher. Assume that adjusting the line length till the 

transmitter DC current reaches a maximum results in a line length l m a z .  The nearest 

reference plane location e, is now given by e, = lmaz.-  X/2. This distance is about 5 

cm away from the transmitter output. The transmitter current maximum was about 4 A, 

which is close to three times the normal working current. A 35 cm long semi-rigid section 

of transmission line was then selected for the final connection joining the coupling network 

to the transmitter. 

Network efficiency cdculates to about 90%. This value could be experimentally 

measured by using two similar, tuned networks back tc! back so that input and output 

impedance levels of the combined network are both 50 ohms. This would facilitate power 

transfer measurements. The disadvantage of the method is the fact that feedthrough losses 

and the laser capacitance Cp have to be simulated and added to each network. 
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Conclusion. 

A new local oscillator housing was built which seems to have improved laser life. Laser 

cooling was changed from internal water cooling to the more convenient thermal contact 

cooling. At the present time, we are not able to conclude if a 20% reduction in power 

output is the result of poorer cooling or poorer grating alignment. 

The new coupling-starting network efficiency was improved from 55% to about 90%. 

It can be adjusted by varying trimmers C1 and C2 to match RF power levels between 10 

a.nd 30 W. If the laser admittance changes greatly with laser life rematching will have to 

be achieved by remote control for space applications. The same holds true if the RF power 

level has to be changed with a maximum efficiency constraint. 

Appendix 

A copy of the paper titled “Efficient 30 W 140 MHz Amplifier for CW CO;! Wave- 

guide Laser Excitation” forms the appendix. The article describes the transmitter and 

coupling-starting network theory and was accepted for publication in the Review of Scien- 

tific Instruments. 
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L1 = 

L2 - 
c1 - 

c2 : 
Ck = 

GI1 - 

- 

- 

- 

- 

G =  

4 turns No 18AWG, 0.36" O.D., 0.070" pitch 

3 turns No lSAWG, 0.36" O.D., 0.065" pitch 

33 pF, ATC type 175, in parallel with 2 Johanson 5601, 
1-30 pF trimmers 

2 Johanson 5601, 1-30 pF trimmers in parallel 

Laser and feedthrough capacitance 

Laser gas conductance 

Loss conductance approximating all of the network and 
feedthrough losses 

Fig. 2. Starting-Coupling Network 



Fig. 3. Normalized Starting Input Admittance for different 
laser RF power levels. 
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EFFICIENT 30 W 140 MHz RF AMPLIFIER FOR CW C02 

WAVEGUIDE LASER EXCITATION 

U.E. Hochuli and P.R. Haldemann 

Electrical Engineering Department 

University of Maryland 

College Park, MD 20742 

Received ; accepted for publication 

Details of a 30 W 140 MHz RF amplifier for CW C02 waveguide laser excitation are 

presented. The amplifier delivers 30 W into a 50 R load while requiring only 40 W of DC 

power from a 28 V supply and 100 mW of RF drive power for an overall efficiency of 75 

percent. 

Coupling-starting network design theory is given that provides the initiation over volt- 

age for the discharge plasma from a RF power source of limited output voltage capability. 

The network then matches the drive circuit to the new input impedance of the operating 

discharge without any adjustments. This design theory applies to the whole class of net- 

works whose losses can be approximated by a loss conductance in parallel with the gas 

discharge. ' 1  
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INTRODUCTION 

RF excitation of the gas discharge in small C02 waveguide lasers is becoming more 

common.'l* Efficiency of the RF circuits is usually not of great concern for laboratory 

applications where sufficient RF power is available to start even reluctant gas discharges. 

The situation is quite different for the case of a prototype heterodyne IR radiometer, 

developed by NASA. The instrument requires 30 W of RF power at 140 MHz for the 

excitation of its computer controlled C02 waveguide laser local oscillator. Future space 

applications of this system demand an efficient 140 MHz amplifier that can be driven with. 

100 mW from a crystal-controlled 140 MHz oscillator. The amplifier also has to have 

the capability of starting the gas discharge of the C02 laser with a minimum of circuit 

complexity. These requirements are satisfied with the circuits described below. 

Coupling-starting network theory is given later that provides the initiation over volt-, 

age for the discharge plasma from a power source of limited output voltage capability. The 

network then matches the drive circuit to the new input impedance of the operating dis- 

charge without any adjustments. This design theory applies to the whole class of matching 

networks whose losses can be approximated by a loss conductance in parallel with the gas 

discharge. 

POWER AMPLIFIER 

The power amplifier circuit shown in Figure 1 uses a DU 2880 RF power MOSFET 
transistor, made by M/A COM-PHI, to produce the desired 30 W of RF power at 140 

MHz with 0.75 W of drive power. The use of an 80 W device to produce only 30 W will be 

justified later. The, tunable input network matches the transistor input to its 50 51 driving 

source. Output matching that transforms the 50 SZ load into the optimum transistor load 

is achieved with another, tunable, network. Matching can be checked with the built-in 

directional coupler. The measured drain efficiency, for 30 W delivered into a 50 R load, 

is 79 percent. This figure aIready includes the losses of the output coupling network and 

is considerably higher than the usual 50 to 60% minimum efficiencies specified by RF 

t r ansis t or manufacturers . 
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DRIVER 

Figure 2 shows the driver circuit which uses a MOTOROLA MRF 134 RF power 

MOSFET transistor to provide an additional power gain of 10 dB. The tuning networks 

again provide matching to a 50 R input source and to the 50 52 load presented by the power 

amplifier input. The 50 R 2 W resistor was necessary for stability reasons, specifically, to 

provide a 50 0 drive source for the power amplifier. Replacement of the MRF 134 by the 

larger MRF 136 transistor provides a sufficiently large transistor output conductance to 

make it appear as a 50 R source without this resistor. 

EFFICIENCY AND SIZE 

40 W of input power from the 28 V DC power supply and less than 100 mW of 140 

MHz RF input power produce 30 W of 140 MHz output power into a 50 St load for an 

overall efficiency of 75 percent. 

The circuits shown in Figures 1 and 2 are located in an aluminum housing with 

external dimensions of 10 x7.5x3cm3. Heat dissipation occurs through the bottom plate 

of the housing to the water cooled main chassis. 

STABILITY 

Stern3]* has analyzed the stability of tuned transistor amplifiers. His analysis uses a 

stability factor I C  which includes the transistors Y parameters as well as input and output 

loading. This stability factor is 

The circuit is potentihlly unstable if K c 1. Leighton6 has simplied Eq. (1) to give 
-. 

At 140 MHz this expression can be simplified, for all practical purposes to 

(3) 
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Here, 

911 N 0.05AIV given by the 10 R gate loading resistor and its leads; 

G, N 0.2AIV the transformed source conductance seen by the gate; 

G, N 0.5AlV from the DU 2880 characteristics; 

C,,, = 32pF gate-drain capacitance. 

These values yield a IC N 2.7. If the driver behaves like a current source, G, N 0 

and consequently K N 0.54. This happens if the 50 Q 2 W resistor in the MRF 134 
output circuit is omitted in which case the power amplifier becomes unstable. For space 

applications very careful attention has to be paid to these stability considerations. 

COUPLING AND STARTING NETWORK 

This network has to match the laser admittance, given by the gas conductance in 

parallel with the laser capacitance, to the 50 Q transmitter output. It also has to provide 

the necessary starting over voltage to give gas breakdown. Typical values for the gas 

conductance and starting voltages for our COZ waveguide laser are shown in Figures 3 and 

4. 

A representative circuit for such a coupling-starting network could be the one shown 

in Figure 5. The auto transformer tap brings the laser admittance close to the 50 Cl 
impedance level of the transmitter output, and the tunable “n’’ network in front of the 

tap permits exact matching. A piece of 50 s1 coaxial cable is here considered as part of 

the network, which is usually close to the laser, and links it to the transmitter. 

Tlie largest losses in such a network occur in the coil with the largest voltage across 

it, in this case the apt0 transformer. Concentration of all the network losses in a loss 

conductance G in parallel with the laser conductance Gr, in conjunction with lossless 

network components, represent a reasonable approximation to the actual network. This 

situation is shown in Figure 5. 
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ANALYSIS OF THE NETWORK 

It can be shown that the input admittance of a linear network must change when a 

power consuming resistor, in this case the gas discharge conductance Gc is removed. n o m  

transmission line theory, it is known that if the starting input admittance x n ,  is required 

to be real, then it must have the following values: 

(i) Y,,, = Yo SWR, low impedance starting (LIS) 

(ii) Y,n, = Yo/SWR, high impedance starting (HIS) where SWR is the standing wave 

ratio on the input coaxial cable under starting conditions. If, in general, 

(iii) Xn, = complex, it has to be consistent with the SWR on the lossless coaxial line. 

If the lossless network is described by it “n” equivalent, as shown in Figure 6, the 

following operating conditions have to hold for matching to the 50 ohm coaxial cable and 

transmitter output : 

(4) 

Separating the real and imaginary parts of equation (4), remembering that if all of the 

networks losses are represented by G, then all the E*;.j’s are pure susceptances, results in: 

( 5 )  = 0.02 and y:2(G + Gf) 
lyZ212 + (G + Gt)2 

u:,yz2 = 0. 
lY2212 + (G + Gt)2 

K1+ 

Using the LIS starting condition of (i) and removing the gas discharge conductance (switch 

open or Gt = 0) yields the starting input admittance 

y:2 = 0.02SWR + jo.  
y22 + G 

Yin, = Y11 - 

Separating the real and imaginary parts of equation (7) yields: 

= 0.02SWR and 
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(9) = 0. y,',y22 

lY2212 + G2 y11  + 
To satisfy equations (6) and (9) simultaneously requires that Yl1 = Y22 = 0. Equations 

( 5 )  and (8) now yield: 

(10) -Yf2 = O.O2(G + Gt) ,  

Gt SWR = 1 + -. 
G 

Equating the input and output powers of the lossless network leads to: 

and to 

under running conditions, -- lV212 0,02  - 
IKlr G +  Gc 

for starting conditions. 
lV212 0.02SWR -- -- 
l W 9  - G  

VI and Vz stand for input and output voltages of the nctxsrk as shown in Figure 6. The 

subscript T refers to running condition (switch closed in Figure 6) and s refers to starting 

conditions (switch open). Combining (12) and (13) shows that 

Adding or subtracting a quarter wave long section of the coaxial cable leads to the 

HIS condition of equation (ii), where 

0.02 
Yln, = SWR' 

Repeating all the steps from equation (7) on, leads to: 
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The network, under these conditions, acts as an ideal 1:l transformer. Any voltage increase 

for starting must be provided by the transmitter itself. An efficiently loaded transmitter 

cannot provide the necessary starting voltage for HIS unless the DC power supply voltage 

is increased. 

The starting condition, equation (iii), calls for a complex &,, commensurate with 

the SWR on the line. If, for example, xn, = 0.02 +jB, by using the relations between 

reflection coefficient magnitude Irl, xnr ,  and SWR, we obtain 

SWR-1 
J r n '  IBI = 0.02 

Using equations (12) and (13) again yields for this case: 

An input susceptance B, = -B can be switched in to make Y,,, = 0.02 for startup. In 

this case, the full transmitter power is used to cover the losses of the network. As soon as 

the gas discharge is started, the transmitter load changes to Kn = 0.02 +jB, because B, 
cannot be switched out fast enough. The discharge can only stay on if the transmitter can 

provide sufficient voltage under this load. 

For all three cases, (i), (ii), and (iii), the efficiency q of the network is given by 

The starting problem is now reduced to the large signal behavior of the transmitter. The 

analysis given applies to any type of linear RF coupling network whose losses can, to a 

good approximation, be represented as a resistance in parallel with the laser load. 

For the three starting conditions mentioned, only the first one, LIS, will be pursued 

further. It is simple and does not require a single additional circuit element. 
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If it is assumed that the transmitter output coupling network is lossless, it can be 

shown that the transistor “sees” the same SWR that is present on the 50 R coaxial line. The 

network merely transforms the reference impedance from the 50 R characteristic impedance 

of the coaxial cable to the optimal parallel load resistance of the transistor. 

The 50 SZ cable input voltage can be kept constant, namely, 

IV1 Ir = IV1 18, if the starting transistor current is 

where 

1111. = running transistor current. 

The starting transistor current 1181 is limited by 

llld 5 Imax, the maximum permissible transistor current. 

Under constant input voltage conditions 

If lIle = Inlax < Illr SWR, then the cable input voltage is IV1le c Ilfllp and the starting- 

to-running voltage ratio becomes: 

This latter condition: will always hold for an efficient coupling network where SWR 2 10. 

The 80 W transistor capability was chosen specifically for LIS conditions. For starting, 

it can be driven hard enough that Imax = 2111, or 3111r, resulting in sufficient voltage 

for starting purposes. Transistor dissipation is high but within reasonable limits during 

LIS. Monitoring of the directional coupler for reflected power can be used to confirm that 

the gas discharge is on. The selection of a relatively large transistor that works most of 

the time in undcrrstcd load conditions offers the advantage of a long transistor life. The 
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L1 2 Turns, No. 20 AWG, .14" I.D. 

Lz Hairpin, No. 25 AWG, 2'' W, .312" H 

L3 1 Turn, NO. 18 AWG, .28" I.D. 

L.1 Niirpin, No. 18 AWG, .2P W, .35" H 

Lg 11 Turns, No. 20 AWG, on Micrometal T-37-0 Core 

Lj  15 Turns;,No. 24 AWG, on 3.3 Ohm 1W Resistor 
' I  

L7 8 "urns,*Bifilar, No. 30 AWG, on Coretronics CT-10-4142 Core 

C 1500pF, Erie 1250-003 

R Adjusted for IUQ = 100-150 mA 

Fig. 1, 30W 140 MHz Power Amplifier 



1220 22 I 

L1 4 Turiis, No. 32 AWG 24 ohm/in Resistance Wire, ,063" I.D. 

Lz 5 Turrls, NO. 20 AWG, 23" I.D. 

Ls 2 Turlis, NO. 20 AWG, .25" I.D. 

L., 34 Turns, No. 24 AWG, on Micrometal T-50-0 Core 

Ls 15 Turns, No 

C 1500pF, Erik' 1250-003 

rL Adjusted for IDO = 20 - 30 mA 

AWG, on 10 8hm 1W Resistor :'i 

Fig. 2, 1W 140 MHz Driver 
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Fig. 5, Typical Coupling-S tartiug Network 

. I  

Fig. G, Equivdent “n” Network 


